Poll locked. Responses not accepted.

Suppose f(x, y) is a nice, differentiable function that we are trying to optimize subject to the constraint $x^2+y^2-1=0.$ If we try to solve the Lagrange multipliers equations, which of the following statements is accurate?

It is possible to find no solutions.

We are guaranteed to find at least one solution.

We are guaranteed to find at least two solutions.

None of the above

Total Results: 13

Example: f(x,y) = x + y $g(x,y) = x^2 + y^2 - 1$ If fix, y) = x+y then we find two solutions. $\nabla f = \langle 1, 1 \rangle$ $\nabla q = \langle 2x, 2y \rangle$ What can you say about the # of solutions in general? $\int |= 2x\lambda$ $|= 2y\lambda$ $\int x^{2} + y^{2} - |= 0$ Get x=y from first the Then solve to find (X, y) $= \left(\begin{array}{c} \sqrt{2} \\ 2 \\ 2 \end{array} \right) \text{ or } \left(\begin{array}{c} -\sqrt{2} \\ 2 \\ 2 \end{array} \right) \left(\begin{array}{c} \sqrt{2} \\ 2 \end{array} \right)$ level sets of $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = 0$

Key point: EXTREME VALUE THEOREM	region)	closed	bounded
Non-example: has no mark or min on open interval 1 <x<3< td=""><td></td><td></td><td></td></x<3<>			
EVT applies when you have a continuous	$X \ge 0$ er) (0,1) is not	egion	
function defined on a region that is both (1) closed: Any point that is infinitesimally	$x^2 + y^2 < 1$. .	
dose to the region is actually in the region. (2) bounded: the region does not go "off to infinity"	$\chi^2 + \chi^2 < 1$	· · · · · · · · · · · · · · · · · · ·	
then the function attains an absolute may and min on the region.	& x E 1/2	· · · · · · · · · · ·	· · · · · · · · ·

Guideline (true in 99% of situations) EVT => f has a max and min on If your region can be algebraically expressed using only $= \leq$ and \geq , then the circle, which Lagrange multiwould find, a second it is closed. If you need < on >, then Note: if fatains max and min @ it probably isn't closed. Same point, then I must be constant Returning to the problem: on the constraint region, so there would be Do many solutions. (In any case, there is closed & bounded are at least 2). A If constraint region is not closed and bounded, then this logic doesn't apply. f(x,y) is assumed differentiable, so in particular it is also continuous e.g. g(x, y) = x - y, f(x, y) = x + y

Situation Optimize fix, y, z)	Alternative method:
subject to $g(x,y,z) = 0$ and h(x,y,z) = 0.	Replace (*) with
h(x,y,z)=0	$\nabla f \cdot (\nabla g \times \nabla h) = 0$
Method arthined in book:	-
$\int \nabla f = \lambda \nabla g + \mu \nabla h (x)$	i.e. $\left \begin{array}{c} f_{x} & f_{y} & f_{z} \\ g_{x} & g_{y} & g_{z} \\ h_{x} & h_{y} & h_{z} \end{array} \right = 0 (x \times)$
$g = \mathcal{O}_{\mathcal{O}}_{\mathcal{O}_{\mathcalO}_{\mathcal$	
	Advantage: Vonget 3 equs in 3 unknowns
This is 5 equations in the 5	X, y, 2 Disadvantage: (***) could be pretty
unknowns X, Y, Z, λ, μ	complicated.
really only care about these @ the end	· · · · / · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·

Alternative: ex) = f(x, y, z) = zdet $\begin{bmatrix} 4 & -3 & 8 \\ -2x & -2y & 2z \end{bmatrix} = 0$ glx.y,z)= 4x-3y+8z-5 $h(x,y,z) = z^2 - x^2 - y^2$ the determinant -8y-bx=0above. J 4x-3y+8z-5 $2^{2} - \chi^{2} - \chi^{2} = 0$ constraint curve Usual method: $\int 0 = 4\lambda - 2x \mu$ $0 = -3\lambda - 2\gamma \mu$ $1 = 8\lambda + 2z \mu$ 4x - 3y + 8z - 5 = 02²-x²-y²=0